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In a recent paper in this journal,1 Whitesides, Mam-
men, and Shakhnovich (WMS) proposed a non-quantum-
mechanical model to obtain a quantitative estimate of
the loss of entropy upon restriction of torsional motion
about a single bond. I wish to point out, however, that
this model, being based on inadequately defined and
somewhat arbitrary assumptions, leads to inconsistent
results.

To discuss the WMS method in the right perspective,
it is useful to briefly recall the fundamentals of internal
rotations which were principally established by Pitzer
and co-workers.2-4 Internal rotation problems can be
divided into three categories depending on the magnitude
of the torsional potential with respect to RT.5 If the
barrier height is very small as compared with RT, then
it may be ignored, and the torsional motion corresponds
to a free rotation, whose partition function is given by
eq 1, where n is the symmetry number for internal
rotation, and Ir is the reduced moment of inertia about
the rotational axis.

Since entropy is related to the internal partition
function by eq 2, the entropic contribution of a free rotor
is given by eq 3.

If the potential is very large in comparison with RT,
then the torsional motion corresponds to a torsional
vibration which may be treated by the harmonic ap-
proximation. The quantum mechanical partition function
for a harmonic oscillator is given by eq 4 (omitting zero
point energy), and the corresponding entropic contribu-
tion by the Einstein equation (eq 5). In both equations x
) hcν̃/kT, where c is the speed of light in cm s-1, and ν̃ is

the torsional harmonic frequency in cm-1.

If the potential barrier is neither very large nor very
small as compared with RT, then the motion corresponds
to a hindered, or restricted, internal rotation. In this case
the theory rests upon the numerical solution of the
Mathieu equation which results from the one-dimen-
sional Schrödinger equation for a rotor having the
torsional potential described by eq 6, where V0 is the
height of the barrier, n is the number of equivalent
minima, and φ is the torsion angle, chosen so that φ ) 0
corresponds to a minimum.6

There are no simple analytic solutions to the hindered
rotation problem, but thermodynamic properties, among
which entropy, have been presented by Pitzer and co-
workers in general tables as a function of two variables,
namely the ratio V0/RT and the reciprocal of free rotor
partition function, 1/Qf.2,5,7 A three-dimensional plot of
the Pitzer and Gwinn entropy tables is reported in Figure
1. The tables are accurate for molecules with one or more
independent internal rotations whose potentials are
described by eq 6, i.e., molecules which can be regarded
as a rigid frame with attached noninteracting sym-
metrical tops.2 To a lower degree of approximation, the
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Figure 1. Three-dimensional plot of entropy for a quantum
mechanical hindered rotor as a function of V0/RT [0, 20] and
1/Qf [0.05, 0.95]. Entropy data, calculated by Pitzer and co-
workers, are from ref 5a.
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tables can also be used in the case of unsymmetrical top
internal rotations provided that the potential energies
are still described by eq 6.3 Recently, approximate
formulas have been suggested for the partition function
of a hindered internal rotation.8-10

More complex cases (e.g., rotating groups attached to
rotating groups, with no limit upon the symmetry of the
groups or upon the number of groups involved in such a
sequence; potentials more complex than that shown in
eq 6; coupled potentials due to interactions between
rotating groups) have been treated by Pitzer and co-
workers by an approximation to the quantum mechanical
partition function shown in eq 7, where the classical
partition function for hindered rotations (QHind Class) is
scaled by the ratio of the quantum mechanical partition
function for harmonic oscillations (QHO Quant) to its clas-
sical counterpart, QHO Class () x-1, for a single vibration).2,4

For a single rotor, QHind Class is given by an integral over
phase space, which, neglecting possible variation of Ir

with the twist angle, and integrating over angular
momentum, reduces to eq 8.2,9,10

Note that if V ≈ 0, the integral in eq 8 is equal to 2π,
yielding the partition function for a free rotor.

The model proposed by WMS assumes classical behav-
ior (without scaling) and independence of the rotor under
examination from other torsions, in other words they
assumed, although not explicitly, that the partition
function for rotation is adequately expressed by eq 8. In
Figure 2 is reported a three-dimensional plot of entropy

for a classical rotor having a hindering potential de-
scribed by eq 6. The plot has been calculated by numer-
ical solution of eq 2 with the partition function given by
eq 8.11 Comparison of the plot in Figure 2 with that
reported in Figure 1 shows that the classical rotor
behaves as the quantum mechanical one only for V0 ) 0
(free rotation), whereas for V0 > 0 the quantum behavior
is approached only in the limit of 1/Qf tending to zero,
namely in the cases involving high reduced moment of
inertia and/or high temperature. Apart from the case of
free rotation, the “classical” entropy is always lower than
the “quantum” one, the deviation being more and more
important the higher V0/RT and/or 1/Qf. Note that for any
finite values of 1/Qf, increase of V0/RT does not lead to
zero entropy, but to negative entropy values, which are
obviously unrealistic. As an empirical rule, obtained by
comparison of the two plots, one can achieve ∼1 J mol-1

K-1 accuracy or better on entropy by the classical model
if the condition in eq 9 is satisfied.

Equation 9 thus sets the limits of applicability of the
classical model in the range of V0/RT and 1/Qf values
reported in Figure 2.

Following the argument of WMS, let us indicate the
integral in eq 8 as the potential energy component of the
partition function, QV, and the term Qf/2π () QT) as the
kinetic energy component of the partition function, so
that eq 8 can be rewritten as QHind Class ) QTQV. According
to WMS, freezing of torsional motion does not affect QT

because this term is a function only of the mass and the
temperature of the system; therefore, they assumed that
the entropy loss involved in freezing of a rotation (Stor)
only depends on the potential energy component of the
partition function. In other words they assumed that eq
10 holds.

This has been translated into eq 11, where P is the
probability [ ) exp(-V/RT)/QV] that the torsion is at
torsional angle φ.1

In practice the method of WMS involves the evaluation
of eq 11 on the basis of adiabatic potential energy maps
obtained by the CHARMm force field.

It should be clear that restriction of an internal
rotation is a thermodynamic process involving an in-
crease of torsional barrier as depicted in Figure 3, in
which is illustrated a progressive restriction of torsional
motion from free rotation to torsional vibration. Accord-
ingly the entropy loss upon restriction is given by the
difference between the initial and the final entropy of
internal rotation. The method of WMS, based on eq 10,
assumes that both the initial and the final state are
adequately described by the classical model, and that the
initial entropy is given by Si ) S(QTQV) ) S(QT) + S(QV),
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Figure 2. Three-dimensional plot of entropy for a classical
hindered rotor as a function of V0/RT [0, 20] and 1/Qf [0.05,
0.95]. Negative entropies have not been reported. See text for
further details.
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whereas the final entropy is given only by Sf ) S(QT),
being the final S(QV) ) 0. I shall return to the meaning
of the latter equation later on; for the moment I want
only to stress the fact that the model of WMS implies
that only a fraction of the entropy that is present in the
rotation initially can be lost upon freezing, i.e., that due
to the potential energy component of the partition func-
tion.

I wish to point out, however, that in the case of
complete restriction of torsional motion (freezing) this
conclusion is erroneous, because freezing a rotation
consists in transforming it into a high frequency torsional
vibration as shown in Figure 3. If the initial partition
function of a hindered rotor is adequately described by
QHind (either quantum or classical, depending on the
adopted level of sophistication), after restriction, it must
be described12 by QHO Quant so that the involved entropy
loss would be given by eq 12.

Complete restriction, or freezing, of a rotor implies that
its motion is transformed into a torsional vibration with
a frequency higher than about 1000 cm-1, which has a
negligible entropic content at 298.15 K (<0.4 J mol-1 K-1,
from eq 5). Under this condition eq 12 reduces to eq 13.

Thus the evaluation of the entropy loss involved in
freezing of a rotor must be based on the complete
partition function (eq 13) and not on its potential energy
component only (eq 10) as suggested by WMS. Stated in
other words, all the entropy that is present in the rotation
initially is lost upon freezing.

Various inconsistencies emerge from the WMS method
if it is adopted to evaluate the entropy of freezing of a
rotor. For example, eq 11 predicts that freezing of a free
rotor (V ≈ 0, and therefore P ) 1/2π) would involve a
constant entropy loss, Stor ) R ln(2π) ) 15.28 J mol-1

K-1,13 independently not only from the moments of inertia
and symmetries of the rotating groups but also from
temperature. This is contrary to the intuitive idea that
an increase of temperature increases the average rate of
free rotation and therefore the entropy associated to it.
Since such entropy will be completely lost upon freezing,
Stor cannot be independent from temperature. In fact, Stor

for the freezing of a free rotor is given by eq 3, which
shows the effects of the temperature, the symmetry, and
the reduced moment of inertia. The effect of the latter
on entropy is less intuitive than that of temperature. It
is well-known that a set of closely spaced energy levels
has a higher entropy than a more widely spaced set.14

An increase of the reduced moment of inertia has the
effect of decreasing the spacing between the energy levels
of the internal rotation,5 and thus of increasing its
entropy at temperatures above absolute zero. The model
proposed by WMS, depending only on the potential
energy curve of internal rotation, is independent from
the moment of inertia of the rotating groups. Thus, for
example, ethane and perdeuteroethane have practically
the same potential barrier15 but different reduced mo-
ments of inertia (Ir ) 1.64 and 3.27 amu Å2, respec-
tively).15 The WMS method would predict the same Stor

for the two molecules. Using the tables of Pitzer and
Gwinn2 with V0 ) 12.4 kJ mol-1,16 and the above Ir

values, the obtained torsional entropies (Stor ) 7.0, and
9.6 J mol-1 K-1 for C2H6, and C2D6, respectively) differ
by as much as 37%. By the way, the WMS method
predicts for ethane a value of Stor of 9.75 J mol-1 K-1 (from
Figure 5 of ref 1) which is significantly greater than its
total torsional entropy (7.0 J mol-1 K-1); this point will
be discussed later on.

The deficiency of the WMS method in accounting for
different reduced moments of inertia is also evident from
a comparison of the values of Stor it predicts for ethane
and butane (9.75 and 7.3 J mol-1K-1, respectively).1 Since
the rotation about the C2-C3 bond in butane has a
higher energy barrier than that in ethane, according to
the WMS method Stor (C2H6) > Stor (C4H10), once again
ignoring the effect of the moments of inertia of the
rotating groups. In a careful study on the thermodynamic
properties of linear alkanes,17 in which earlier calcula-
tions of Pitzer were revised,18 Person and Pimentel
reported an entropy value at 298.15 K of 18.72 J mol-1

K-1 for the internal rotation of butane, and 18.92 J mol-1

K-1 for an internal rotation in an aliphatic chain from
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Figure 3. Potential energy curves for an increasingly re-
stricted internal rotation about a generic single bond. Curve
a: free rotation; curves b, c: hindered internal rotations; curve
d: torsional vibration.

Stor ) S(QHind) - S(QHO Quant) (12)

Stor ) S(QHind) (13)
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heptane to eicosane.19 The loss of entropy upon freezing
an internal rotation in an aliphatic chain is usually the
largest contribution to changes in entropy upon cycliza-
tion. By examining the entropy changes accompanying
ring closure of short alkane chains, O’Neal and Benson
estimated that the entropy loss per internal rotation is
about 20 J mol-1 K-1.20 Similarly, Jencks and Page
estimated a value ranging from 15.5 to 20.5 J mol-1

K-1.21,22 By a large number of experimental entropy data
in solution related to several cyclization reaction series
involving up to seven rotors, an average value of 16.7 J
mol-1 K-1 per rotor was obtained by Mandolini.23 All
these evaluations are in substantial agreement, and all
suggest that the entropic cost of freezing the internal
rotation of butane evaluated by WMS is greatly under-
estimated.

WMS claim that the qualitative trends of Stor they
obtained are consistent with chemical intuition. In fact,
the collective intuition of chemists is strong about energy,
but rather weak about entropy. Since the evaluation of
Stor by WMS is based on potential energy, the qualitative
trends of Stor they obtained reflects trends in potential
energy barriers. In fact, the entropy trend may be the
opposite of that obtained by WMS, as exemplified by the
comparison of the torsional entropy of ethane and butane.

A referee pointed out that in most of the examples of
interest in organic synthesis, in drug design, in molecular
recognition, in molecular self-assembly, etc., the restric-
tion of internal rotations is only partial. He concluded
that in these cases the final state could be described by
a classical model, and therefore the model of WMS would
be roughly correct.

While there is little doubt that complete or almost
complete restriction can only occur in a limited number
of cases, such as cyclizations leading to small ring
compounds, it is also obvious that partial restriction is
not univocally defined since the extent of restriction can
vary from negligible to complete. Thus the WMS method
cannot provide a satisfactory answer to the problem of
partial restriction. In fact evaluation of the entropy of
partial restriction, as well as choice of the appropriate
method(s) for such evaluation, require a precise knowl-
edge of the torsional potential energy curve not only of
the initial state but also of the final state. In the WMS

method the final state is classical and characterized by
S(QV) ) 0. If one assumes a potential of the form of eq 6,
it is found that S(QV) ) 0 when V0/RT ∼ 35 (for higher
V0/RT values, S(QV) < 0). Introducing this value in eq 9,
one observes that the classical approximation is accept-
able if 1/Qf < 0.18.24 Thus the WMS method provides a
value of the entropy loss which is meaningful only if 1/Qf

< 0.18 and if the final state has a barrier of ∼87 kJ mol-1

at room temperature, a condition which is too singular
to be of any general meaning. Note that if 1/Qf > 0.18,
absurd results can be obtained. For example, in the case
of ethane (1/Qf ) 0.377 at 298.15 K) a rapid calculation
shows that S(QT) ) S(Qf) - R ln(2π) ) -3.01 J mol-1

K-1. Since S(QV) ) 9.75 J mol-1 K-1 (vide supra), the total
entropy of rotation of the initial state calculated by the
classical model is S(QT) + S(QV) ) 6.74 J mol-1 K-1, a
value not too far from that calculated by the tables of
Pitzer and Gwinn (7.0 J mol-1 K-1). However for the final
state, the total entropy of rotation, being equal to S(QT),
would be negative, a clearly unrealistic result. In other
words S(QV) can be greater than the total entropy, and
use of the WMS method would lead to an entropy loss
that exceeds the total entropy present in the rotation
initially, a clear impossibility.

A final point regards the entries 4, 7, 10 of Table 2 in
ref 1, which report values of Stor for “torsions” about the
ethynyl group (a linear group) in 1-butyne, butadiyne,
and butenyne, respectively. While in the cases of 1-butyne
and butenyne such motion is in fact rotation of the whole
molecule about the axis defined by the ethynyl group, in
the case of butadiyne there is not even a degree of
freedom associated to such pseudomotion. No matter how
these values of Stor have been calculated they are
certainly meaningless.

Conclusion
The WMS model is based on the assumption that only

the potential energy component of the partition function
for a hindered rotation undergoes changes upon restric-
tion of torsional motion, whereas the kinetic energy
component remains constant. In the present comment it
is remarked that complete restriction (freezing) of a
hindered rotation consists in transforming it into a
torsional vibration having a frequency higher than about
1000 cm-1, which has a negligible entropic content. Thus
all the entropy that is present in the rotation initially is
lost upon freezing, and not only the potential energy
component.

Admittedly, complete or almost complete restriction
can only occur in a limited number of cases, such as
cyclizations leading to small ring compounds; however,
knowledge of the entropy of freezing is important because
it sets the upper limit for the possible loss of entropy upon
restriction of torsional motion which, in most cases, is
only partial.
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